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Distribution of zeros of the partition function of the 
antiferromagnetic Husimi-Temperley model I 

M OHMINAMIT, Y ABE and S KATSURA 
Department of Applied Physics, Tohoku University, Sendai, Japan 

MS received 19 June 1972 

Abstract. To study the locus of zeros of the partition function for the antiferromagnets, an 
exactly soluble simplest model (the antiferromagnetic Husimi-Temperley model) is proposed. 
Thermodynamic properties of the model are shown to be the same as those in the molecular 
field approximation of the Ising or Heisenberg model. The locus of zeros in the complex 
fugacity plane of the model is obtained by the method of comparing the real part of the 
various branches of the complex free energies (in most cases, of the antiferromagnetic state 
and of the paramagnetic states). The locus is a loop which does not cut the real positive 
axis above the critical temperature. Below the critical temperature, the locus of the zeros 
consists of dual loops which cut the real positive axis at z, and l/z, and the density of zeros 
near the real axis is proportional to Iz-zJ. At the critical temperature the locus is a loop 
which crosses at z = 1 and the density of zeros is proportional to Iz-zJ3. 

1. Introduction 

Yang and Lee (1952) related phase transitions to the distribution of zeros of the partition 
function in the complex fugacity plane, and Lee and Yang (1952) proved the circle 
theorem for the ferromagnetic Ising model of S = 4. Much work has been published 
since, and in particular, it was proved that the circle theorem holds for several ferro- 
magnetic systems (Griffiths 1969, Asano 1970, Suzuki and Fisher 1971). 

For the antiferromagnetic systems, the situation is more complicated. Zeros of the 
partition function of the one dimensional antiferromagnetic Ising model were proved to 
be located on the negative real axis (Yang 1952). Katsura et a1 (1971, to be referred to as 
KAY) examined the finite (4 x 6) Ising model with nearest ( J )  and next nearest ( J ’ )  neigh- 
bour interactions and found several patterns of the distribution of zeros. In the case 
J < 0 and J’ > 0, where the antiferromagnetic configuration is more stable than the 
case J’ = 0, the locus at low temperatures is found to consist of two nearly concentric 
circles which cut the positive real axis a t  z ,  and l/z, (= exp( f 2mHc/kT)) corresponding 
to the critical field. Katsura and Ohminami (1972, to be referred to as KO) obtained the 
distribution of zeros of the one dimensional Ising model with nearest and next nearest 
neighbour interactions by the transfer matrix method and showed that the locus consists 
of a part of two nearly concentric circles for the case J < 0 and J’ > 0. 

In this paper, a soluble model for the antiferromagnet-the antiferromagnetic 
Husimi-Temperley (AHT) model, speaking more generally, two ‘sublattice’ Husimi- 
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Temperley model-is introduced in Q 2 and thermodynamic properties of the model are 
shown to be the same as the results in the molecular field approximation of the Ising or 
the Heisenberg model (Van Vleck 1941, Garrett 1952). By a method described in 0 3 
the locus of zeros for the AHT model is obtained. Above the critical temperature the 
locus is a loop which does not cut the positive real axis. Below the critical temperature 
the locus consists of dual loops which cut the positive real axis at z, and l/zc. The 
density of the zeros of this model is discussed in Q 4. 

2. Two sublattice (antiferromagnetic) Husimi-Temperley model 

We consider a system of Ising spins of S = f which are located on either an a ‘sublattice’ 
or p ‘sublattice’. The number of sites of each sublattice is N/2. The number of down 
spins (opposite to the magnetic field) on the a ( p )  sublattice is denoted by nu (np ) .  All 
interactions between sites in the same or in the different sublattices are assumed to be 
equal. The pair interaction energy is taken to be - J / N  (+ J / N )  between spins of the 
same (opposite) directions on different sublattices, and - yJ/N (+ yJ/N) between spins 
of the same (opposite) directions on the same sublattices. 

The partition function Z(T, H, N) of the model is given by 

x exp[&(:-2nu) ( r - 2 9 )  

+*{(E- 2NkT 2 2nu) + (:-- 2 4 )  ’ - N ]] 
where z = exp( - 2mH/kT) and m is the magnetic moment of the spin. 

exponent becomes a function of only nu + na 
we have : 

When y = 1, the difference between the a and fi sublattices disappears, and the 
n. Carrying out one of the summations, 

J 
Z(T, H, N )  = z - ~ ”  

n=O 

Equation (2.2) represents the partition function of the (one sublattice) Husimi-Temperley 
model, for which a molecular field approximation of the ferromagnets was shown to be 
valid exactly when J > 0 (Husimi 1953, Temperley 1954, Katsura 1955). Zeros of the 
partition function (2.2) for J > 0 were found to lie on the unit circle in the z plane and 
the distribution function was given (Katsura 1955, and references in KAY). 

When J < 0 and y = 1, the (one sublattice) Husimi-Temperley model with anti- 
ferromagnetic interaction comes out. The zeros of the partition function of this model 
were proved to lie on the negative real axis by Heilmann (1971), and the model does not 
show the phase transition. 

The model introduced here (equation (2.1)) is the Husimi-Temperley model general- 
ized in such a way that the antiferromagnetism can be treated. When J > 0 and y >, 0, 
zeros distribute on the unit circle and the property is ferromagnetic. 
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Now the case of J -= 0 and y < 0, that is the antiferromagnetic case, is considered. 
The free energy FN of this system is given by 

F N  1 h 
2t -- N k  - z{ o,op + &(of + o;)} - - (0, + up) + ${ ( 1  - 0,) In ( 1  - a,) + ( 1  + 6,) ln (1 + o,) 

+ (1 -os) In (1 - a , ) + ( l  +os) In ( 1  + op)} - In 2, 

t = 2kT/(  -.I), h = 2mH/( - J ) ,  

where t ,  h, IT, (=  1 - 4n,/N) and ap (= 1 - 4 n s / N )  denote the temperature, the magnetic 
field, U and sublattice magnetizations in reduced units. Sublattice magnetizations o, 
and op are determined by minimizing the free energy : 

h - - 70, 
0, = tanh( ) (2 .51)  

h - 0, - yap 
op = tanh( ) (2.56) 

Equations (2.5a) and (2 .56)  have two solutions. The paramagnetic state is given by 
o, = ap = ap, that is, 

op = tanh( h - ( l + y ) o p  ) .  ( 2 . 5 ~ )  

The antiferromagnetic state is characterized by o, # up.  The normalized total magnet- 
ization o, = (a, + a p ) / 2  is given by 

as a function of the magnetic field. Putting oa = op = oo in equations ( 2 . 5 ~ )  and (2.6), 
the phase boundary between the paramagnetic phase and the antiferromagnetic phase 
is found to be 

( 2 . 7 ~ )  h, = t arctanh oo + (1 + y)o, 

(2.76) 

t ,  = 1 - y, (2.8) 
where t ,  is the reduced Nee1 temperature. 

These results mean that the thermodynamic properties of our model are the same 
as those of the molecular field approximation (Van Vleck 1941, Garrett 1952) of the 
antiferromagnets. We call the model the 'two sublattice' Husimi-Temperley model, 
and in particular when J i 0 and y < 0, the antiferromagnetic Husimi-Temperley 
(m) model. It is expected that the distribution of zeros of the AHT model represents 
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the behaviour of that of the antiferromagnetic Ising or Heisenberg model qualitatively 
well. 

3. The locus and the density of zeros 

We assume that the zeros of the partition function distribute on a curve C in the complex 
z plane in the limit N --+ CO. The number of zeros in a line element ds at z = z(s)  is 
denoted by Ng(s)  ds. Then x is defined by 

2 
N 

~ ( z , t ) + 2 1 n 2  = lim-lnZ, = 

zx ' (z)  = o = jC$, (3.2) 

where z = exp( - 2h/t) is the fugacity. 
First we consider the case where the partition function Z ,  is expressed in terms of 

the eigenvalues Ai of the transfer matrix (KO). We denote as 2, a branch which has the 
largest absolute value among li, then we have 

When the absolute values of A and 2, are equal (2, = I,, ei@), we have 

Z N  - A?(I+ eiN+ 1. (3.4) 

The right hand side of equation (3.3) cannot be zero while that of (3.4) can. Thus we see 
that when Z,(z) = 0, IA,(z)l should be equal to 1A2(z)1. In most cases I,,(z) is a branch 
generated by an analytic continuation of IL,(z), and l%l(z)/ is equal to exp{ - Re(F,/NkT)), 
where FN is a complex free energy continued analytically from the real axis. 

From the above argument we assume that the locus C of zeros is generally obtained 
in the following way. At a given temperature t ,  two complex solutions of equations 
(2.5a) and(2.5b), o l ( z )  and 02(z) ,  which make the real part of ~ ( z )  the largest and the second 
largest, are calculated. The set of z which satisfies 

(3.5) Re x(o1(4) = Re x(az(4L 
where 

1 Y 1 1 
t 2t 2 2 ~ ( z )  = x(o,(z)) = -a,op+-(o,2 +oi)--ln(l  -oi)--ln(l --oi),  (3 .6~)  

or 

is regarded as a locus of zeros. Then the density g(z)  is given by 

In most cases a1 and o2 are the magnetizations of the complex paramagnetic phase and 
the complex antiferromagnetic phase (see 0 4). In some cases they are different branches 
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of a paramagnetic phase (see Appendix). The circle theorem in the ferromagnetic case 
is also shown to be consistent with the above procedure (see Appendix). 

Thelociofzerosthusobtainedareshowninfigure lfory = Oandfigure2fory = - 1. 
The reduced temperature t/t, is taken to be, (a) below, (b) at, and (c) above the Nee1 
temperature in figures 1 and 2. In figure l(b), zeros of finite systems of N = 60, and in 
figure 2(a), those of N = 60, 16 and 8, are also plotted. It is confirmed that the zeros of 
a finite model tend to lie on the locus obtained by the present method? as N goes to 
infinity. It is to be noted that the locus of zeros in the antiferromagnetic case is of an 
asymptotic nature, that is, zeros tend to distribute on the locus obtained here as N goes 
to infinity, while in the ferromagnetic case the circle theorem holds for any finite N .  

The locus consists of double loops below t < t,, of one loop above t > t ,  , and of a 
hybrid shape at  t = t, . The points at which the loops cut the positive real axis correspond 
to the critical fields given by equation (2.8). When y = 0, the loops have cusps on the 
real axis and tails appear on the negative real axis, while when y = - 1, tails disappear. 
The loop part of the locus was obtained as the place where the real part of the complex 
free energy of the complex antiferromagnetic state and that of the complex paramagnetic 
state become equal, while the tail part was where those ofthe two complex paramagnetic 
states become equal (see Appendix). Such patterns of the locus of zeros of the anti- 
ferromagnets are what KAY predicted. 

The discussion of the distribution of zeros near the real axis and its relation to the 
critical thermodynamic properties are given in 0 4. 

4. Distribution of zeros near the positive real axis 

In this section, the distribution of zeros near the positive real axis for the case y = 0 is 
studied. From equations (2 .5~)  and (2.5b), the fugacity z is related to : 

z = 1-0, -expi+), - 20 1+0, 
(4 .1~)  

or to an equation in which a and bare  interchanged in (4 .1~)  which is denoted by (4.1b). 
Such conventions are used hereafter. 

4.1. Below the critical temperature (t < 1) 

The sublattice magnetization of the AHT model at  the critical field is given by equation 
(2.7). Put 

A 

h = h-h, (4.2) 
I = z/z,-1 = exp(-2ij/t)-1 = r e ' @  (4.3) 

6, = 0,-00, 6, 5 0,-0,, (4.4) 
where 

1-00 exp (+), 
z, = exp( - 2h,/t) = ___ 

1 + 0 0  
(4.5) 

t In the case of a one dimensional hard core system, the procedure is proved to be rigorous by Penrose and 
Elvey (1968). 
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R 

Figure 1. The locus of the zeros of the partition function for the case y = 0. (a) t i t ,  = 0.9; 
( b )  fit, = 1.0; (c)  t / t ,  = 1.1. In (b) crosses represent zeros for the case N = 60 (some zeros 
on the negative real axis are outside the figure). 
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Figure 2. The locus of the zeros of the partition function for the case y = - 1. (a) t/t, = 0.9 ; 
(b) t/t, = 1.0; (c) r/t, = 1.1. In (a) x ,  and 0 represent zeros for the cases N = 60, 16 and 
8 respectively (0 and in the inner loop are omitted). 
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Expanding the equations (3.6), (4.la) and (4.lb) in terms of small quantities 6, and 
6,, we have 

X-X, = X-X(Z,) = -2a,t- ' (8,+8p)+~t- '(6,+8p)2-ait-2(a,"+6~)+ . . . (4.6) 

& = - 2t- ' (aa + 8,)+2t-2(6,+ -4t-3(6,+ 

- 20,t - 26: - +t -33: + 2a,t - 36:(200 - + 26,) + . . . . (4.7a) 

From equation (4.7), we have 

& = -2t- l (  a, + a,) + 2t - 2(a,  + 6,)2 - a,t - '(6," + 8;) + . . . (4.8) 
and 

0 = (6, -8,) { - 20,t-~(6., + 6,) - 2tc3(3- 20, + ai)(6: + 6,6, + a;)+ 4 ~ ~ , t - ~ 6 , 6 , )  + . . . . 
(4.9) 

From equation (4.9), two solutions are obtained. 

4.1.1. The p-state. A state where 6, = 6, is satisfied, is called a complex paramagnetic 
state. Then 

(4.10) 2 = -2t-'(6,+6,)+ . . . 

(4.1 1) 

4.1.2. The a-state. A state where equation (4.9) is satisfied with a, # a, is called a 
complex antiferromagnetic state. Then 

(4.12) 

(4.13) 

2 = -2r-'(a,+B,)(l-aip-')+ . . . 
2, = 2o,-Qt(l +4a0t- ')(1 - 0 i p - ' ) - ~ i ~ + O ( 2 ~ ) ,  

where 
p = ++a;. 

The difference between the x of the p- and a-states is given by 

fa-ip = - ~ & ~ ( 1  to0 +40ot-')(CJo+6). (4.14) 

Hence, cos 21) should be zero on the locus of zeros near z,. From the condition of 
stability of the solutions we have a, cos I) > 0, hence we have z-z, = r exp( +$xi) for 
z, > 1 and z-z, = r exp( +ani) for z, < 1. In figure 2(a) I) is observed to be +ax and 
i s n .  The density of zeros is given by 

g(r) = -(1+4aot-')(oo+6)r+ to, . . . . (4.15) 
4 J 2  

It is linear to the distance from zc,  which implies 1 0 -  col = constant x (h- h,l. 

4.2. At the critical temperature ( t  = 1) 

Putting 

2 = z-z, = z-1 (4.16) 
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in equations (4 .1~)  and (4.lb) and expanding equations (3.6), (4 .1~)  and (4.lb) in terms of 
small quantities a, and ap,  we find 

(4.17) 

(4.18) 

x = -+((o,+ap)2-%o:+a;)+ . . . 
1 = - 2(a, + ap) + 2(a, + ap)2 - 3aa + cs)3 - 5.: + . . . . 

From equation (4.18), we have 

2 = - 2(aa + ap) + 2(aa + ap)2 -&Tu + Op)3 + aaap(aa + OD) + . . . 

O = a,3-ap3 = (a,-ap)(a~+o,ap+o~)+ . . . . 

(4.19) 
and 

(4.20) 

The two states corresponding to the two solutions of equation (4.20) are the p-state and 
the a-state, respectively. 

4.2.1. The p-state. Putting an = ap = U in equations (4.17) and (4.19), we have 

x = -2U2-L 2u 4 + 0 ( u 6 )  (4.21) 

1 = - 4u + 8u2 - %$u3 + 0(u4). (4.22) 

Elimination of U between (4.21) and (4.22) yields 

P = A 2 2  +'23 8 - L E A 4  1 5 3 6 z  +o(e5)* (4.23) 

4.2.2. The a-state. Similarly, putting (aa + ap)2 = u,ap = 4u2, we have 

za = - 22.4' + 4u4 + 0 ( u 6 )  (4.24) 

1 = - 4u + 8u2 - tu3  + O(u4). (4.25) 

x = -$12+'23-- 8 :93224 + o(e5). (4.26) 
Then 

The difference of xa and xp is given by 

-x = ---24+0(25). 3 (4.27) 
a P 29 

Hence cos 41) should be zero on the locus. From the condition of stability of the 

z = 1 f r exp(i+r) and z = 1 f r  exp(i8n). (4.28) 

The result of (4.28) is observed in figure 2(b). From equation (4.27), the density of 

solutions, we have cos 21) < 0. Then the loci of zeros near z = z ,  are 

zeros near the real axis is given by 

3 sin(3n/8) 
= 28n r3. 

Equation (4.29) implies that 101 = constant x lhI3 at t = t , .  

5. Conclusions 

(4.29) 

In the present paper an exactly soluble simplest model for the antiferromagnet (the AHT 
model) has been introduced and the distribution of zeros of the partition function of the 
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model has been obtained. It has been shown that the thermodynamic properties of the 
AHT model are the same as those in the molecular field approximation for the Ising or 
the Heisenberg model. 

The locus of zeros in the complex fugacity plane was obtained by the method of 
comparing the real part of the complex free energies of various branches of the states 
(the antiferromagnetic state and the paramagnetic state, or two branches of the para- 
magnetic state). That is, the line where the largest and the second largest of ReX(z) 
become equal is the locus. The present consideration throws light on the method of 
Hemmer and Hauge (1964) and Hemmer et a1 (1966). The validity of the method was 
confirmed by comparing with the results of finite systems. The method of the present 
paper can be applied to other models, and will be the subject of other papers. 

Above the critical temperature the locus is a closed loop which does not cut the 
positive real axis. Below the critical temperature the locus consists of dual closed loops 
enclosing the origin. The locus cuts the positive real z axis at  z, and l/z, corresponding 
to the critical fields. 

It was also shown that below the critical temperature the locus for y = 0 crosses 
the positive real z axis at angles $n and an and that the density near z, is proportional to 
the distance from z,, which means that [oa-ool = constant x Ih-hJ.  At the critical 
temperature the locus crosses the positive real z axis at angles in and in and the density 
near z ,  is proportional to the third power of the distance from z,, which means that 
\gal = constant x lhI3. 

The results of the present paper clarify the characteristic features of the distribution 
of zeros of antiferromagnets as predicted in KAY and KO. 
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Appendix. The unit circle and real axis as possible loci 

Relationships between the real and imaginary parts of xa, xp,  oa, ob, op and h are derived 
from equations (2.5), (2.6) and (3.6). The case y = 0 is considered. Put 

h = h, + ih, (A.1) 

a, = xa+iy,, op = xp+iya (A.2) 

op = xp+iyp, (‘4.3) 
then we have: 

t 2% h, = x p  +- arctanh 
2 1 + x,’ - y,” 

t 2Y, 
2 1 - x u  -Ya 

h, = yp+-arctan 2 .  

(A.4a) 

(A.5a) 

Equations derived by the interchange of c1 and /3 in equations (A.4a) and ( A h )  hold 
and are denoted by equations (A.4b) and (ASb). 



Zeros of partition function of the AHT model I 1679 

h, = xp +- t arctanh 2XP 
2 1 +x; - y; 

t 2YP 
1 - yz’ h, = y, +- arctan 

P P  2 

and 

x(a,) = [fix,x,-y,y,)-$In{(I -xf+y,Z)’+4~,2~,2} -bln{(l -x&?+y&?)’+4xiy&?}] 

+ i  {: -arctan ( 2 x a ~ ,  )-:arctan( 1 -x&?+yp 2 x p ~ p  .)] 
1 -x,z +y,2 

(A.7) 

(‘4.9) x(op) = [fixi-yi)-+ln{(l -xi+yi)z+4xiyi)]+i  arctan( 2XdP 2 ) .  

l-x;+yp 

When a set of (T, = x,+iy, and a, = xp+iyp is a solution of equation (A.4) for 
h,  = 0, then a set of (T, = -x,+iy, and ap = - x p  +iy, is also a solution of equation 
(A.4) which gives the same value of the real part of equation (A.8). I t  means that on the 
unit circle of the z plane Re ~ ( z )  of these two branches of solutions are equal. When a 
set of Q, = xu + iy, and 0, = x, + iy, is a solution of equation (A.4) for h, = 0, then a 
set of (T, = xu - iy, and Q, = x, - iy, is also a solution of equation (A.4) which gives the 
same value of the real part of equation (A.8). It means that on the real axis of the z 
plane Re ~ ( z )  of these branches of solutions are equal. What part of a unit circle or of 
a real axis can be a locus, depending on whether Re,y(z) on it is the largest (among 
various branches) or not? In the case y = 0, tails which are parts of the negative real 
axis appear as an example of the latter. 

When (T, = (o,+ap)/2 = crP at some value of complex h, it is evident that 
Re ~(0,) = Re ~(0,). Unfortunately (T, = (T, can occur only for real values of h (given 
by equation (2.8)). A numerical search to find the position of h where Re ~(o , )  = Re ~(0,) 
with equations (A.4), (AS), (AA), and (A.6), (A.7), (A.9) gives loops in figures 1 and 2. 
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